Creating word embeddings that reflect semantic relationships encoded in lexical knowledge resources is an open challenge. One approach is to use a random walk over a knowledge graph to generate a pseudocorpus and use this corpus to train embeddings. However, the effect of the shape of the knowledge graph on the generated pseudo-corpora, and on the resulting word embeddings, has not been studied. To explore this, we use English WordNet, constrained to the taxonomic (tree-like) portion of the graph, as a case study. We investigate the properties of the generated pseudo-corpora, and their impact on the resulting embeddings. We find that the distributions in the psuedo-corpora exhibit properties found in natural corpora, such as Zipf’s and Heaps’ law, and also observe that the proportion of rare words in a pseudo-corpus affects the performance of its embeddings on word similarity.